AGRICULTURA & PECUÁRIA
Inteligência artificial torna mais preciso o mapeamento da intensificação agrícola no Cerrado
Metodologia pioneira foi desenvolvida com algoritmos de classificação digital de imagens de satélites baseados em Inteligência Artificial (IA). Aplicada em análises de imagens do Cerrado do município de Sorriso (MT), permitiu acurácia de até 97%. Tal precisão favorece estudos e monitoramento relacionados ao uso da terra e à prática da intensificação agrícola. A abordagem diferenciada da metodologia, marcada pela harmonização de dados Landsat e Sentinel-2, além da utilização dos algoritmos, viabilizou a identificação de áreas com até três safras no mesmo ano agrícola, o que não é comum na maioria dos mapeamentos existentes. A metodologia foi desenvolvida por pesquisadores da Embrapa, Universidade Estadual de Campinas (Unicamp), Instituto Nacional de Pesquisas Espaciais (Inpe) e Universidade Federal de Uberlândia (UFU). O trabalho está publicado na revista International Journal of Geo-Information (IJGI). Detalhes da metodologia, resultados e mapas gerados podem ser consultados no Repositório de Dados de Pesquisa da Embrapa (Redape). |
Metodologia pioneira, desenvolvida com suporte da Inteligência Artificial (IA), permitiu o alcance de um nível de acurácia de até 97%, quando aplicada em análises de imagens de satélite do Cerrado do município de Sorriso (MT), um dos principais produtores agrícolas do País. A acurácia é um aspecto relevante nos levantamentos realizados por meio de sensoriamento remoto.
A ferramenta atribui maior precisão aos estudos, monitoramento e planejamento relacionados ao uso da terra e à prática da intensificação agrícola, e contribui para a tomada de decisão, nas esferas pública e privada, com base em informações geoespaciais qualificadas.
A metodologia foi desenvolvida com algoritmos de classificação digital de imagens de satélites baseados em IA. Resulta do trabalho de pesquisadores da Embrapa, Universidade Estadual de Campinas (Unicamp), Instituto Nacional de Pesquisas Espaciais (Inpe) e Universidade Federal de Uberlândia (UFU), publicado na revista International Journal of Geo-Information (IJGI), na edição de julho de 2023, com acesso gratuito para o público.
“Os resultados demonstram a robustez da metodologia desenvolvida com foco na identificação de processos de dinâmica de uso da terra, como a intensificação agrícola”, avalia o pesquisador da Embrapa Agricultura Digital Édson Bolfe, coordenador do projeto Mapeamento agropecuário no Cerrado via combinação de imagens multisensores (MultiCER), financiado pela Fundação de Amparo à Pesquisa de São Paulo (Fapesp).
Bolfe explica que, dentre os principais diferenciais da metodologia, está a geração de uma base de dados geoespaciais ampliada a partir de imagens harmonizadas dos satélites Landsat, da Agência Aeroespacial dos Estados Unidos (Nasa), e Sentinel-2, da Agência Espacial Europeia (ESA), denominada de HLS, e a utilização de algoritmos de classificação digital baseados em IA. A abordagem viabilizou o mapeamento dos cultivos agrícolas em três diferentes níveis hierárquicos, indicando áreas com uma, duas e até três safras no mesmo ano agrícola.
A sucessão de safras de diferentes culturas agrícolas em uma mesma área e no mesmo calendário agrícola, visando aumentar a produção sem envolver a supressão de novas áreas nativas, é uma prática crescente no Brasil, e os seus mapeamento e monitoramento podem nortear tomadores de decisão em análises voltadas ao planejamento agroambiental, em especial.
Metodologia está disponível para consulta e utilização Integrantes da academia, poder público e setor produtivo podem acessar detalhes da metodologia, resultados e mapas gerados no Repositório de Dados de Pesquisa da Embrapa (Redape). A estrutura metodológica é replicável em outras regiões do Cerrado com características semelhantes. Mais informações sobre a Plataforma de coleta de dados em campo estão disponíveis em AgroTag. |
Agilidade e precisão, o papel do AgroTag
Produtos de sensoriamento remoto e modelos de IA para classificação de imagens pixel-a-pixel têm demonstrado elevada confiabilidade no mapeamento agrícola, explica Bolfe. Com HLS é possível obter até duas imagens por semana nas mesmas regiões agrícolas de interesse.
Um dos desafios da equipe de pesquisa está na obtenção de informações qualitativas e quantitativas de campo, que são fundamentais no sensoriamento remoto na agricultura. Para isso, os pesquisadores utilizaram o aplicativo AgroTag, desenvolvido pela Embrapa Meio Ambiente para conferir agilidade e precisão ao mapeamento das principais culturas agrícolas em escalas regional e nacional.
“Algoritmos baseados em IA dependem fortemente de uma quantidade massiva de dados de entrada para a realização dos chamados ‘treinamentos’. Esses últimos são processos nos quais dados amostrais de referência, ou verdades de campo, são utilizados para ensinar os algoritmos a identificar os alvos sob investigação em grandes áreas, nesse caso utilizando imagens de satélite, ou seja, mapeamento em larga escala”, comenta o pesquisador da Embrapa Meio Ambiente, Luiz Eduardo Vicente, especialista em sensoriamento remoto e um dos coordenadores do projeto AgroTag.
Nesse sentido, segundo Vicente, o uso do AgroTag foi fundamental, pois permitiu a coleta rápida e precisa de informações de campo, como o tipo de uso e cobertura da terra em cada ponto amostral, transferindo-as automaticamente para a nuvem de dados on-line, viabilizando seu uso nos referidos algoritmos.
Em contraposição aos métodos de coleta tradicionais, o AgroTag representou, durante o projeto, um incremento de 25% a mais de áreas amostradas. “O projeto reafirma um dos motivos pelos quais o AgroTag foi criado”, destaca Vicente.